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Abstract— Course-offering determination (COD) for educational 
programs is the complex task of deciding what subset of courses 
an academic department or program should offer in a given 
academic term or semester. In this paper, we first model COD 
decision settings, e.g. modeling students as a group of self-
interested agents, and then use a group decision-making protocol 
voting theory to aggregate the preferences of the different 
participants toward a single joint decision. Finally, we show how 
agent-to-agent negotiation techniques can be used to offer courses 
to mutual benefit between the department and the body of the 
students.   
  
Keywords:  multiagent systems, course-offering determination 

I. INTRODUCTION 
Course offering determination (COD) is concerned with 

the optimal assignment of the courses for a specific academic 
semester by program administration to meet the needs of 
students within budget and other resource constraints. 
Students in degree programs have various course selection 
preferences and priorities. A department of an academic 
institution may not be able to offer all courses in a program 
every semester, especially under contemporary fiscal and 
staffing constraints. Courses are only arranged every other 
semester or even less frequently. Therefore, the program 
administrator needs to determine course offering for the 
coming semester using the past experience, historical course 
registrations of the program, and the availability of instructors.  
In the current course offering workflow, after a course 
delivery schedule for a new semester become available as the 
registration period is approaching, the student can select 
courses to be taken in the coming semester. The competing or 
even adversarial goals of students and the department as well 
as the mutability of those goals mean that COD is a complex 
constraint-satisfaction problem. Evidence shows that COD 
without adequate consideration of the students’ needs and 
priority often results in unsatisfied students, low enrollments, 
and delayed graduation. Effective COD permits the efficient 
assignment of limited resources like faculty, labs, and 
classrooms while satisfying the desires of most students.   

The multiagent system (MAS) approach allows the 
representation of every principal in the system as a single 
autonomous agent with unique goals and permits decision-
making based on the preferences of multiple agents [1]. The 
agents can react with the needed flexibility to changes and 
disturbances through pro-activeness and responsiveness [2]. 

Therefore, the MAS approach is used to solve the COD 
problem because it has the following characteristics: (1) its 
optimal solution can change during calculation; (2) The 
relation between a user and the scheduling system lasts for a 
long period of time, which features a high degree of repetition, 
and may count for the possibility of learning by feedback; (3) 
The course scheduling is time consuming; (4) The process of 
scheduling for course-offering involves different parties, e.g. 
program administrators and students. Individuals have 
particular preferences, resulting in conflicting goals and 
therefore leading to conflicts of interest between them. These 
conflicts should be resolved in a fair cooperative decision 
making manner; (5). Program administrators consider job 
markets and the unpredictable nature of preferences students, 
which generate the need in course scheduling to adapt fast and 
flexibly to environmental variables and their changes. 

II. LITERATURE REVIEW 
The majority of Artificial Intelligence applications in 
education address pedagogical tasks related to tutoring and 
personalized instruction, such as [3-4]. Significantly fewer 
publications are related to the decision-making or 
administrative tasks in education such as school choice [5], 
academic advising [6], and course timetable scheduling [7].  
The MAS approach has proven an important and effective 
framework for intelligent educational systems, for example 
iHelp [8], program planning [9], Time Table Scheduling [10], 
and personalized study planning [11]. To the best knowledge 
of the authors, there is no significant extant work on solving 
the COD problem. In this paper, we first model COD decision 
settings, e.g. modeling students as a group of self-interested 
agents, expressing their preferences [12] and then use a group 
decision-making protocol --- voting theory [13] to aggregate 
the preferences of the different participants toward a single 
joint decision. Finally, we show how the negotiation 
techniques [14] is used to generate a set of course offerings for 
the next term that reflects those preferences, academic 
requirements, and economic necessities to mutual benefit 
between the department and the students. 

III. SYSTEM ARCHITECTURE 
We designed a MAS system that consists of an 

administrator (AD) agent, a group of student (SA) agents, and 
a student representative (SR) agent. This correlates with an 
academic program, where a course scheduling process is 
initiated by having the program administrator determine the 



priority of courses available in the program, based on 
expressed student needs, preferences and goals. The agents 
have distinct areas of concern and intent, but collectively 
interact to generate a set of recommendations for courses to be 
offered that will be satisfactory to most students while fitting 
within the operational limitations of the offering program. The 
interactions amongst our agents are depicted in Figure 1.  
 

 
 

Figure 1: Interactions among the agents. 

A. Agent Types 
SA Agent:  An SA agent has three major responsibilities: 

(1) representing the student principal’s interest in interactions 
with other agents; (2) generating plans for their principals; and 
(3) generating course selection requests for their principals.  

SR Agent: An SR agent is instantiated for any identifiable 
student group with shared interests and resources. Typically, 
this would be one per academic program. The SR agent has 
the following major responsibilities: (1) Managing voting 
among student agents, ensuring fairness. (2) Representing the 
student body to other agents, particularly the AD agent.   

AD Agent: The AD agent is the representative of the 
program administration’s calculating the needs of the 
academic department as determined by factors such as course 
delivery policies, budget, and resource availability. It is 
responsible to: (1) Provide executive control and oversight for 
the system; (2) Enforce resource and other course availability 
constraints; (3) Inform other agents of those constraints; (4) 
Negotiate with the SR agent to provide an optimal set of 
course offering recommendations to the offering academic 
program.  

B. Agent Interactions  
Within this system, for each semester, before the course 

registration starts, the program administrator of the department 
delegates the task of initial selection to his/her AD agent, 
which performs this task using course dependency graphs, past 
offerings, and departmental obligations. The AD agent collects 
requirement information from the program administrator, 
which determines a set of required courses (C0) for the next 
term as well as the proposed budget for course delivery in the 
next term. At the same time, each SA agent generates a study 
plan based on the program study preferences of the student, 

identifies "ready-to-take" courses of the student, and captures 
course selection preferences of the student. Once all SA agents 
complete the actions mentioned above, they send their votes to 
the SR agent. And then the SR agent aggregates the votes and 
generates the set of all ranked preference ordering over 
courses as a group decision. Once the AD agent has this 
information, it initiates a one-to-one agent negotiation with the 
SR agent.  

IV. VOTE GENERATION BY SA AGENT 

A. Preference representation 
Our initial investigation was through interviews and 

anecdotal discussions with current students, staff and faculty. 
We had strong indications that the desirability of a particular 
course was not independent of other course’s availability. It 
appeared that course selection preferences are more properly 
thought of as conditional preferences. Furthermore, there were 
a variety of ways and degrees of complexity that individual 
students might express the way in which they determine which 
courses they want to take in the upcoming term. 

We identified three distinct models of how students 
described their preferences with regard to course offerings, 
which we have termed: precedence, grouping, and 
progression. The first, precedence, simply referenced a most-
preferred course, a next-most preferred, etc. However, after a 
comparatively short list of courses, the students lapse into a 
don’t-care state along the lines of “if none of those are offered, 
then it doesn’t matter”. This sort of preference model is 
common in cases where the student only plans on taking one 
or a very few courses. The next model was more common 
amongst students planning on taking several courses: grouping. 
In this case, students express their desires in terms of sets - a 
group of courses is desired en masse, and if not all courses are 
available, and then the remainder are less desirable. Finally, 
there is the case of those students that plan their program 
progressions sequentially – their desire is to complete some 
set of courses, then progress to another set, etc, which we have 
termed the progression model. This sort of preference closely 
approximates the way in which academic departments model 
academic progression and is common in the case where 
students are in a full-time degree program or wish to 
systematically complete a program. This progression model is 
also most similar to that expressed in the CP-net [13].  

B. Generating Fractional Votes 
Based on the preferences expressed by the principal on one 

or more of our preference models, the SA agent automatically 
generates a set of fractional votes for each round of an election. 
Prior to the voting process, the SA agent determined the list of 
all courses in the program that that student can legally and 
preferably take, which consist of all incomplete courses of the 
student for which all pre-requisites have been completed. The 
SA agent receives a list of courses from the AD agent that will 
not be offered. The SA agent also receives a list of courses that 
will already be recommended from the AD agent. These are 
similarly removed from the “legal” course set –but are treated 
as though they will be offered for purposes of other decisions.  



From the progression interface, all legal courses that are 
either in the first block of a progression or whose predecessor 
block contains only courses that have already been taken are 
added to the list. From the grouping interface, all courses from 
groups in which all member courses can legally be taken are 
added to the list. From the precedence interface, the highest 
ranked course that can be preferably and legally taken is added.  

Each of the courses on the list then gets a relative fraction 
of the agent’s single vote for that round, with repeat courses 
getting a proportionately higher portion of the vote. The vote 
is recalculated for each round, and can be affected by the 
results of previous votes. The use of multiple fractional votes 
also provides another advantage – it makes the systems 
sufficiently computationally complex that it is resistant to 
manipulation [14].  

C. Election Protocol 
For each round of agent negotiation, the SR agent uses the 

dynamic information about student preferences and the current 
state of negotiation to generate an ordered list of desired 
courses — corresponding to a vote — for the next term from 
the set of courses that each student could possibly take 
provided by the AD agent, as determined by course 
dependencies and program selections, as well as by the set of 
courses that it has already been determined will be offered. 

For each round of agent negotiation, the SR agent collects 
the updated ordered list of desired courses from all the 
participating student agents and determines the aggregate 
student preferences for the near-term course-offerings. To this 
end, we construct the SR agent behavior for coordinating the 
election process with an algorithm based on Single 
Transferable Vote (STV) algorithm [11]. The reason for using 
STV is as follows: (1) the SA agents vote for the courses they 
want, but they will often have several courses that will work 
for them, so using a straight one-vote-for-one-student-for-one-
course system does not adequately represent the actual desires 
of students. Alternatively, having the students vote for each 
course they can take will produce an overabundance of votes, 
which might give a misleading picture of which courses will 
actually be taken in the upcoming terms, and does little to 
address the preferences of the student. A system would need to 
consider all the courses available to students, while still taking 
into account the students course preferences. (2) It has been 
shown that STV, in comparison with other voting schemes in 
actual use, is computationally resistant to manipulation [16].  

D. STV-based Election Process 
The overall STV-based election process is managed by the 

SR agent. It is a multiple-round plurality election. In each 
round, electors revise their votes through partitioning their 
votes across multiple candidates using previous results in 
formulating a new vote: 

 
L0: the set of courses that will be offered, regardless of student 
preferences – perhaps because of contractual obligations or because 
a course has not been offered for some time. L: the ordered list of 
courses. r: the number of rounds for the election process. 
A1: [Initialization, SR agent] r ← 1; L ← L0. 

A2: [SA agents] do the following two steps until either the list of 
courses reaches some pre-determined maximum number or 
until no agents are still voting: 

 A2.1: [all SA agents re-vote] re-generate their set of fractional 
votes and send them to the SR agent.  

 A2.2: [SR agent aggregates preferences of SA agents] Find the 
course with the highest number of votes (“wins”), denoted as c; 
L ← L + {c}; r ← r +1.    
 
Because agents cannot vote for courses that are already 

being offered, in the worst case the voting will proceed until 
all the courses that the program could offer have been ordered 
by desirability. There are a number of rules that help to ensure 
that this protocol is fair and will always terminate, for example, 
“there are a finite number of courses that can be voted on.” As 
there are finite courses available for voting on, and this set is 
reduced each round, the system will always converge on a 
single recommended list. Because the number of rounds is 
strictly determined by the number of courses, the system’s 
complexity is linear on that axis. It is further linear with the 
number of students – even for a large number of courses or 
students, this model is computationally feasible.  

V. NEGOTIATION PROTOCOL 
We developed the negotiation protocol that governs the 

interactions between the AD agent and the SR agent for 
determining a recommended set of course offerings in several 
heterogeneous steps:  

(1) Determining Non-Negotiable Courses Initially, the AD 
agent identifies a set of courses C0 that must be offered 
(irrespective of negotiation) and the initial number n0 of 
courses that should be offered, as governed by budget 
constraints.  

(2) Determining not-to-offer courses C-1 The AD agent 
also prepares an excluded list containing courses that 
absolutely may not be offered (C-1).  

(3)Determining Negotiable Courses Once the required 
courses have been identified and the initial budget target has 
been determined, this information is presented by the two 
agents as an initial position. The negotiation then proceeds 
iteratively between the two agents, the AD agent attempting to 
maximize the course enrolments and minimize delivery 
overhead, and to maximize staff efficiency of the offering, and 
the SR agent attempting to maximize the availability of 
courses desired or needed by students to complete their 
programs. Consequently, the SR agent will primarily agitate 
for the inclusion of all courses that students have expressed a 
desire to take, in order of popularity (as determined by voting). 
Based on a monotonic concession protocol [16], a negotiation 
protocol to determine negotiable courses is developed.  

A. Disutility function of the AD agent:   
The AD agent calculates the (dis)utility of the current offering 
list according to the formula below: 
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where nc is the number of courses in the offering list and 
Cost(ci) is the cost of delivering course ci. Costideal is a 
putative ideal expenditure on course delivery, typically 
governed by the departmental budget. It is assumed that 
departments will prefer to be on-budget rather than to under- 
or over-shoot the target, so the utility function reflects this. 
Obviously, this function might be modified to meet the 
particular circumstances of a delivering department. It should 
also be noted that in this case, the goal is to minimize the 
value UAD, which can thus be thought of as a disutility value.  

In addition to the particular (dis)utility of a given offering, 
the AD agent has a set variance from the ideal that it will 
accept as satisfactory (the amount that a given offerings cost 
can vary from the ideal budget amount, positive or negative). 
This value UAD determines the value of a simple satisfied 
predicate (Asat) that is simply the truth of the statement UAD ≤ 
∆UAD. In iterations after the first iteration, the current offering 
list may be updated by adding the content of the proposal of 
the SR agent, if this does not cause the (dis)utility (UAD) to rise. 
The fixed excluded list, current offering list and the 
satisfaction predicate Asat for that offering list is transmitted to 
the SR agent at the beginning of each iteration of the 
negotiation.  

 
Figure 2: Message passing (a) Downstream; (b) Upstream. 

 

B. Disutility function of the SA agent  
Given a list of offering courses, a SA agent compares the 

preference (vote) of the student to calculate its (dis)utility 
value. For example, we can define it as  
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where j is the number of courses the student is planning on 
taking in the upcoming term. Rm is the rank on the current 
offering list of the mth course in the vote of the student that is 
ranked by the vote value. In the case that no course from the 
current offering is represented in the preference list, a value 
one greater than the total number of courses in the preference 
list is used. The SA agents report USA back to the SR agent. 
They also provide a vote for the STV process that will be used 
to generate the next offering in the negotiation (if there is one). 
This vote is the ordered list of all courses the student agent 
could potentially take in the next term, less any courses 
currently in the offering list (as they will already be offered) 
and any courses in the excluded list (as they will not be 
offered). This vote and the current disutility for that student 
agent commence the initial upstream message passing (see 
Figure 4b).  

C. Negotiation process 
The SA agents initiate the upstream messages to the SR 

agent. These consist of USAi the current offering list, and the 
vote list to be used in calculating the next proposal. The SR 
agent receives these values and calculates a collective 
disutility based on the statistical content of USAi. Our concern 
was that the collective disutility not merely reflect the average 
disutility experienced by the various SA agents, but also the 
degree to which individual agents varied from that average. 
For example, a low average disutility which nevertheless had a 
few agents that were extremely dissatisfied might not be 
preferable to a slightly higher disutility where all agents were 
near that value. Consequently, we added a term to the 
collective disutility to capture the variance in reported values, 
as measured by the standard deviation of the values: 

σ21 lxlUSR +=  , 

where USR is the collective disutility, x  the arithmetic 
mean and σ  the standard deviation of the reported USAi. The 
weighting constants l1 and l2 (l1 + l2=1) are used to tune the 
contribution of each component to the calculated disutility.  

In a manner similar to the calculation done for the AD 
agent, the SR agent determines a satisfied predicate, SRsat 
which indicates whether the aggregate disutility is less than 
the permitted variance SRsat = (USR ≤ ∆USR). If SRsat is true, the 
SR agent is satisfied with the current offering.  

The SR agent also calculates the courses for the next 
proposal even if it is already satisfied. The number of courses 
for the STV is either a standard initial value, the size of the 
most recent accepted proposal to the AD agent, or one less 
than the most recent rejected proposal to the AD agent. This 
allows the protocol to converge more rapidly on an acceptable 
solution by initially jumping by several courses before 
dropping down ultimately to one course at a time for the final 
negotiations. It also allows us to use STV more optimally, as 
its value is more readily apparent in elections where several 
candidates will be elected. 
The SR agent sends its current satisfaction value to the AD 
agent, along with the current proposal, which is the output 
from the STV election for the specified number of candidates.  
The AD agent recalculates UAD based on a projected course 
list that is the sum of the current offering list and the courses 
in the proposal. If that disutility is smaller than the previous 
disutility, the proposal is accepted and added to the current 
offering list. This step occurs even if both agents are already 
satisfied, to allow the possibility of a final improvement on 
disutility before concluding negotiation.  

If Asat is true and the SR agent has indicated that the last 
round satisfied it, the negotiation is concluded and the AD 
agent records the final offering list and sends it to the SA 
agents. If the Asat is false, the negotiation will always continue. 
If the AD agent is satisfied, but the SR agent is unsatisfied, the 
negotiation will continue until the count of courses in a 
proposal reaches zero (recall that the SR agent will iteratively 
decrease the number of courses after a rejected offer). In the 
case that the AD agent still declines to add a course (rejects 
even a one course proposal) and the Asat is false (which is only 



possible in the case that an earlier iteration overshot by adding 
too many courses), the SR agent must continue by submitting 
offers that involve removing courses. It does so by iteratively 
holding an election with only the current offering list courses 
as candidates. The loser (first eliminated course) is sent as a 
removal proposal. This continues iteratively until the AD 
agent indicates satisfaction. Once the count of courses in a 
proposal reaches zero, the SR agent must accept the last 
proposal that satisfied the administrator, even if this is the 
required courses only. In this way, the negotiation converges 
fairly rapidly to a set that is near the budgeted amount for the 
department, while trying to add courses most likely to fit into 
the plans of the majority of students.  

VI. EXPERIMENTS 
To evaluate the proposed approach, a prototype was 

implemented with JADE (http://jade.tilab.com), which allows 
simulating different scenarios by varying several parameters, 
such as the course number of the program, the divergence of 
preferences for course selection, or the must-offer courses due 
to emergence cases. We simulated a collection of MSc IS 
program students shown in Table 1 consisting of 88 students. 
Given that a course set cn

iicC 1}{ ==

 

to be offered in a semester 
in the program, the actual cost to be paid for the course 
offering is calculated as follows: 

∑
=

+=−=
cn

i
icidealAD hrnbCCostCostCCostU

1
)()(,)( , 

where b is the base salary for one course to be paid to the 
instructor for the course, e.g., b = $5000; r is the amount of 
money to pay to the instructor for one student, e.g. r = $500; hi 
is the number of the students who will take course ci for 1≤i 
≤nc, and Cideal =$75,000.; nc = 88 ; C0 = {c501, c503, c504, c601, 
c695}; C-1 = {c602, c604, c617, c636   c637, c682}; ∆UAD = $100; ∆USR 
= 3. 

 
Table 1: simulation results 

Round  R2 R3 R4 R5 

ci H1 V2 H2 V3 H3 V4 H4 V5 H5 
c501 23 0.2 12  9  9  9 
c503 17 0.2 14  13  13  13 
c504 11 0.2 9  8  8  8 
c601 20 0.2 15  13  11  11 
c695 6 0.5 6  6  5  5 
c607  0.2  0.2  0.2  1.2  
c605  5.0  12 10  10  10 
c602  1.6  1.6  1.6  1.6  
c610  0.7  0.7  0.7  1.7  
c648  2.0  2.0  2.0 4  3 
c691  60. 64 0.5 64  64  64 
660  1.0  1.0  1.0  1.0  
c689  1.0  1.0  1.0  2.0 11 
c667  1.7  2.0  2.0 12  12 
 
In R1: C1 = C0 U{c602, c605, c607, c610, c648, c660, c667, c689, 

c691}. Getting hi shown in column H1 of Table 1. UAD(C1) = 
$11500.0. In R2: c691 is chosen in this round, with a voting 

result of 60. Getting h691= 64 shown in H2 in Table 1 since it 
is the first course chosen, and many students have it as their 
first pick due to it being on many plans and not having many 
prerequisites. UAD(C1)= $15000.0. Comparing Cideal, the 
Administrator is still not satisfied with required courses. The 
SR agent is also unsatisfied with course offering as SR 
Weight: 10.31. After R3 and R4, in R5, the required 9 courses 
are: C0, c691, c605, c648, and c667. The votes for this round are 
shown in V5 of Table 1. c689 is chosen in this round, with a 
result of 2.0. UAD = $48,000. So the AD agent is still 
unsatisfied with the list. The SR agent is now satisfied with 
course offering. The SR agent’s weight is 0.86. Negotiation 
concluded with a list: C1 = C0 U {c691, c605, c648, c667}. The size 
limit of a class is not considered. 

VII. CONCLUSIONS  
COD is a complex task that requires the ability to search, 

schedule, and coordinate a set of participating entities under 
various constraints and uncertainties. We show that the MAS 
approach is an enabling technology to automate the dynamic 
COD through voting mechanism and negotiation. This paper 
focuses on the architecture, mechanisms of preference 
aggregation, and agent negotiation. This architecture provides 
several advantages:  

(1) uncoupling the implementation of discrete or 
competing concerns;  

(2) using relatively simple agents to combinatorially 
generate complex emergent behavior through their 
interactions;  

(3) encapsulating the representation of a single human 
principal’s preferences and goals into a single agent; and we 
can simulate the formal interactions amongst human 
principals—and produce similar results without requiring 
those interactions to take place.  

The use of the STV-like protocol permitted us to 
implement a single agent that served as a representative for the 
entire student body, communicating with the individual SA 
agents that represent their specific human principals. The 
effectiveness of the approach has been demonstrated via the 
experiments. Real life implementation of these methods in 
undergraduate and graduate programs of educational 
institutions can be expected in the near future.  
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