

 A MAS Approach to Course Offering Determination

Fuhua Lin, Alex Newcomb, A. J. Armstrong

This paper has been accepted by the 2012 International Symposium on The Intelligent Campus
(IC12) iCampus, Theme: Intelligent Educational Environments for the Next Generation, within
the 2012 World Intelligence Congress, December 4-7, 2012 Macau, China.

The paper is based on many years' efforts and innovative work by the team led by the applicant
during 2009-2011. During that time period, Alex Newcomb was an undergraduate student of
University of Alberta and he worked as an USRA student for this research. A. J. Armstrong was
a master student of MSc in Information Systems of Athabasca University during 2009-2011.

A MAS Approach to Course Offering Determination

Fuhua Lin Alex Newcomb
School of Computing and Information Systems

Athabasca University
Athabasca, Canada

oscarl@athabascau.ca

A.J. Armstrong
Computer Engineering Technology

Northern Alberta Institute of Technology
Edmonton, Canada

aja@nait.ca

Abstract— Course-offering determination (COD) for educational
programs is the complex task of deciding what subset of courses
an academic department or program should offer in a given
academic term or semester. In this paper, we first model COD
decision settings, e.g. modeling students as a group of self-
interested agents, and then use a group decision-making protocol
voting theory to aggregate the preferences of the different
participants toward a single joint decision. Finally, we show how
agent-to-agent negotiation techniques can be used to offer courses
to mutual benefit between the department and the body of the
students.

Keywords: multiagent systems, course-offering determination

I. INTRODUCTION
Course offering determination (COD) is concerned with

the optimal assignment of the courses for a specific academic
semester by program administration to meet the needs of
students within budget and other resource constraints.
Students in degree programs have various course selection
preferences and priorities. A department of an academic
institution may not be able to offer all courses in a program
every semester, especially under contemporary fiscal and
staffing constraints. Courses are only arranged every other
semester or even less frequently. Therefore, the program
administrator needs to determine course offering for the
coming semester using the past experience, historical course
registrations of the program, and the availability of instructors.
In the current course offering workflow, after a course
delivery schedule for a new semester become available as the
registration period is approaching, the student can select
courses to be taken in the coming semester. The competing or
even adversarial goals of students and the department as well
as the mutability of those goals mean that COD is a complex
constraint-satisfaction problem. Evidence shows that COD
without adequate consideration of the students’ needs and
priority often results in unsatisfied students, low enrollments,
and delayed graduation. Effective COD permits the efficient
assignment of limited resources like faculty, labs, and
classrooms while satisfying the desires of most students.

The multiagent system (MAS) approach allows the
representation of every principal in the system as a single
autonomous agent with unique goals and permits decision-
making based on the preferences of multiple agents [1]. The
agents can react with the needed flexibility to changes and
disturbances through pro-activeness and responsiveness [2].

Therefore, the MAS approach is used to solve the COD
problem because it has the following characteristics: (1) its
optimal solution can change during calculation; (2) The
relation between a user and the scheduling system lasts for a
long period of time, which features a high degree of repetition,
and may count for the possibility of learning by feedback; (3)
The course scheduling is time consuming; (4) The process of
scheduling for course-offering involves different parties, e.g.
program administrators and students. Individuals have
particular preferences, resulting in conflicting goals and
therefore leading to conflicts of interest between them. These
conflicts should be resolved in a fair cooperative decision
making manner; (5). Program administrators consider job
markets and the unpredictable nature of preferences students,
which generate the need in course scheduling to adapt fast and
flexibly to environmental variables and their changes.

II. LITERATURE REVIEW
The majority of Artificial Intelligence applications in
education address pedagogical tasks related to tutoring and
personalized instruction, such as [3-4]. Significantly fewer
publications are related to the decision-making or
administrative tasks in education such as school choice [5],
academic advising [6], and course timetable scheduling [7].
The MAS approach has proven an important and effective
framework for intelligent educational systems, for example
iHelp [8], program planning [9], Time Table Scheduling [10],
and personalized study planning [11]. To the best knowledge
of the authors, there is no significant extant work on solving
the COD problem. In this paper, we first model COD decision
settings, e.g. modeling students as a group of self-interested
agents, expressing their preferences [12] and then use a group
decision-making protocol --- voting theory [13] to aggregate
the preferences of the different participants toward a single
joint decision. Finally, we show how the negotiation
techniques [14] is used to generate a set of course offerings for
the next term that reflects those preferences, academic
requirements, and economic necessities to mutual benefit
between the department and the students.

III. SYSTEM ARCHITECTURE
We designed a MAS system that consists of an

administrator (AD) agent, a group of student (SA) agents, and
a student representative (SR) agent. This correlates with an
academic program, where a course scheduling process is
initiated by having the program administrator determine the

priority of courses available in the program, based on
expressed student needs, preferences and goals. The agents
have distinct areas of concern and intent, but collectively
interact to generate a set of recommendations for courses to be
offered that will be satisfactory to most students while fitting
within the operational limitations of the offering program. The
interactions amongst our agents are depicted in Figure 1.

Figure 1: Interactions among the agents.

A. Agent Types
SA Agent: An SA agent has three major responsibilities:

(1) representing the student principal’s interest in interactions
with other agents; (2) generating plans for their principals; and
(3) generating course selection requests for their principals.

SR Agent: An SR agent is instantiated for any identifiable
student group with shared interests and resources. Typically,
this would be one per academic program. The SR agent has
the following major responsibilities: (1) Managing voting
among student agents, ensuring fairness. (2) Representing the
student body to other agents, particularly the AD agent.

AD Agent: The AD agent is the representative of the
program administration’s calculating the needs of the
academic department as determined by factors such as course
delivery policies, budget, and resource availability. It is
responsible to: (1) Provide executive control and oversight for
the system; (2) Enforce resource and other course availability
constraints; (3) Inform other agents of those constraints; (4)
Negotiate with the SR agent to provide an optimal set of
course offering recommendations to the offering academic
program.

B. Agent Interactions
Within this system, for each semester, before the course

registration starts, the program administrator of the department
delegates the task of initial selection to his/her AD agent,
which performs this task using course dependency graphs, past
offerings, and departmental obligations. The AD agent collects
requirement information from the program administrator,
which determines a set of required courses (C0) for the next
term as well as the proposed budget for course delivery in the
next term. At the same time, each SA agent generates a study
plan based on the program study preferences of the student,

identifies "ready-to-take" courses of the student, and captures
course selection preferences of the student. Once all SA agents
complete the actions mentioned above, they send their votes to
the SR agent. And then the SR agent aggregates the votes and
generates the set of all ranked preference ordering over
courses as a group decision. Once the AD agent has this
information, it initiates a one-to-one agent negotiation with the
SR agent.

IV. VOTE GENERATION BY SA AGENT

A. Preference representation
Our initial investigation was through interviews and

anecdotal discussions with current students, staff and faculty.
We had strong indications that the desirability of a particular
course was not independent of other course’s availability. It
appeared that course selection preferences are more properly
thought of as conditional preferences. Furthermore, there were
a variety of ways and degrees of complexity that individual
students might express the way in which they determine which
courses they want to take in the upcoming term.

We identified three distinct models of how students
described their preferences with regard to course offerings,
which we have termed: precedence, grouping, and
progression. The first, precedence, simply referenced a most-
preferred course, a next-most preferred, etc. However, after a
comparatively short list of courses, the students lapse into a
don’t-care state along the lines of “if none of those are offered,
then it doesn’t matter”. This sort of preference model is
common in cases where the student only plans on taking one
or a very few courses. The next model was more common
amongst students planning on taking several courses: grouping.
In this case, students express their desires in terms of sets - a
group of courses is desired en masse, and if not all courses are
available, and then the remainder are less desirable. Finally,
there is the case of those students that plan their program
progressions sequentially – their desire is to complete some
set of courses, then progress to another set, etc, which we have
termed the progression model. This sort of preference closely
approximates the way in which academic departments model
academic progression and is common in the case where
students are in a full-time degree program or wish to
systematically complete a program. This progression model is
also most similar to that expressed in the CP-net [13].

B. Generating Fractional Votes
Based on the preferences expressed by the principal on one

or more of our preference models, the SA agent automatically
generates a set of fractional votes for each round of an election.
Prior to the voting process, the SA agent determined the list of
all courses in the program that that student can legally and
preferably take, which consist of all incomplete courses of the
student for which all pre-requisites have been completed. The
SA agent receives a list of courses from the AD agent that will
not be offered. The SA agent also receives a list of courses that
will already be recommended from the AD agent. These are
similarly removed from the “legal” course set –but are treated
as though they will be offered for purposes of other decisions.

From the progression interface, all legal courses that are
either in the first block of a progression or whose predecessor
block contains only courses that have already been taken are
added to the list. From the grouping interface, all courses from
groups in which all member courses can legally be taken are
added to the list. From the precedence interface, the highest
ranked course that can be preferably and legally taken is added.

Each of the courses on the list then gets a relative fraction
of the agent’s single vote for that round, with repeat courses
getting a proportionately higher portion of the vote. The vote
is recalculated for each round, and can be affected by the
results of previous votes. The use of multiple fractional votes
also provides another advantage – it makes the systems
sufficiently computationally complex that it is resistant to
manipulation [14].

C. Election Protocol
For each round of agent negotiation, the SR agent uses the

dynamic information about student preferences and the current
state of negotiation to generate an ordered list of desired
courses — corresponding to a vote — for the next term from
the set of courses that each student could possibly take
provided by the AD agent, as determined by course
dependencies and program selections, as well as by the set of
courses that it has already been determined will be offered.

For each round of agent negotiation, the SR agent collects
the updated ordered list of desired courses from all the
participating student agents and determines the aggregate
student preferences for the near-term course-offerings. To this
end, we construct the SR agent behavior for coordinating the
election process with an algorithm based on Single
Transferable Vote (STV) algorithm [11]. The reason for using
STV is as follows: (1) the SA agents vote for the courses they
want, but they will often have several courses that will work
for them, so using a straight one-vote-for-one-student-for-one-
course system does not adequately represent the actual desires
of students. Alternatively, having the students vote for each
course they can take will produce an overabundance of votes,
which might give a misleading picture of which courses will
actually be taken in the upcoming terms, and does little to
address the preferences of the student. A system would need to
consider all the courses available to students, while still taking
into account the students course preferences. (2) It has been
shown that STV, in comparison with other voting schemes in
actual use, is computationally resistant to manipulation [16].

D. STV-based Election Process
The overall STV-based election process is managed by the

SR agent. It is a multiple-round plurality election. In each
round, electors revise their votes through partitioning their
votes across multiple candidates using previous results in
formulating a new vote:

L0: the set of courses that will be offered, regardless of student
preferences – perhaps because of contractual obligations or because
a course has not been offered for some time. L: the ordered list of
courses. r: the number of rounds for the election process.
A1: [Initialization, SR agent] r ← 1; L ← L0.

A2: [SA agents] do the following two steps until either the list of
courses reaches some pre-determined maximum number or
until no agents are still voting:

 A2.1: [all SA agents re-vote] re-generate their set of fractional
votes and send them to the SR agent.

 A2.2: [SR agent aggregates preferences of SA agents] Find the
course with the highest number of votes (“wins”), denoted as c;
L ← L + {c}; r ← r +1.

Because agents cannot vote for courses that are already

being offered, in the worst case the voting will proceed until
all the courses that the program could offer have been ordered
by desirability. There are a number of rules that help to ensure
that this protocol is fair and will always terminate, for example,
“there are a finite number of courses that can be voted on.” As
there are finite courses available for voting on, and this set is
reduced each round, the system will always converge on a
single recommended list. Because the number of rounds is
strictly determined by the number of courses, the system’s
complexity is linear on that axis. It is further linear with the
number of students – even for a large number of courses or
students, this model is computationally feasible.

V. NEGOTIATION PROTOCOL
We developed the negotiation protocol that governs the

interactions between the AD agent and the SR agent for
determining a recommended set of course offerings in several
heterogeneous steps:

(1) Determining Non-Negotiable Courses Initially, the AD
agent identifies a set of courses C0 that must be offered
(irrespective of negotiation) and the initial number n0 of
courses that should be offered, as governed by budget
constraints.

(2) Determining not-to-offer courses C-1 The AD agent
also prepares an excluded list containing courses that
absolutely may not be offered (C-1).

(3)Determining Negotiable Courses Once the required
courses have been identified and the initial budget target has
been determined, this information is presented by the two
agents as an initial position. The negotiation then proceeds
iteratively between the two agents, the AD agent attempting to
maximize the course enrolments and minimize delivery
overhead, and to maximize staff efficiency of the offering, and
the SR agent attempting to maximize the availability of
courses desired or needed by students to complete their
programs. Consequently, the SR agent will primarily agitate
for the inclusion of all courses that students have expressed a
desire to take, in order of popularity (as determined by voting).
Based on a monotonic concession protocol [16], a negotiation
protocol to determine negotiable courses is developed.

A. Disutility function of the AD agent:
The AD agent calculates the (dis)utility of the current offering
list according to the formula below:

∑
=

−=
cn

n
idealnAD CostcCostU

1
)(

where nc is the number of courses in the offering list and
Cost(ci) is the cost of delivering course ci. Costideal is a
putative ideal expenditure on course delivery, typically
governed by the departmental budget. It is assumed that
departments will prefer to be on-budget rather than to under-
or over-shoot the target, so the utility function reflects this.
Obviously, this function might be modified to meet the
particular circumstances of a delivering department. It should
also be noted that in this case, the goal is to minimize the
value UAD, which can thus be thought of as a disutility value.

In addition to the particular (dis)utility of a given offering,
the AD agent has a set variance from the ideal that it will
accept as satisfactory (the amount that a given offerings cost
can vary from the ideal budget amount, positive or negative).
This value UAD determines the value of a simple satisfied
predicate (Asat) that is simply the truth of the statement UAD ≤
∆UAD. In iterations after the first iteration, the current offering
list may be updated by adding the content of the proposal of
the SR agent, if this does not cause the (dis)utility (UAD) to rise.
The fixed excluded list, current offering list and the
satisfaction predicate Asat for that offering list is transmitted to
the SR agent at the beginning of each iteration of the
negotiation.

Figure 2: Message passing (a) Downstream; (b) Upstream.

B. Disutility function of the SA agent
Given a list of offering courses, a SA agent compares the

preference (vote) of the student to calculate its (dis)utility
value. For example, we can define it as

∑
=

−=
j

m
mSA mRU

1
)(,

where j is the number of courses the student is planning on
taking in the upcoming term. Rm is the rank on the current
offering list of the mth course in the vote of the student that is
ranked by the vote value. In the case that no course from the
current offering is represented in the preference list, a value
one greater than the total number of courses in the preference
list is used. The SA agents report USA back to the SR agent.
They also provide a vote for the STV process that will be used
to generate the next offering in the negotiation (if there is one).
This vote is the ordered list of all courses the student agent
could potentially take in the next term, less any courses
currently in the offering list (as they will already be offered)
and any courses in the excluded list (as they will not be
offered). This vote and the current disutility for that student
agent commence the initial upstream message passing (see
Figure 4b).

C. Negotiation process
The SA agents initiate the upstream messages to the SR

agent. These consist of USAi the current offering list, and the
vote list to be used in calculating the next proposal. The SR
agent receives these values and calculates a collective
disutility based on the statistical content of USAi. Our concern
was that the collective disutility not merely reflect the average
disutility experienced by the various SA agents, but also the
degree to which individual agents varied from that average.
For example, a low average disutility which nevertheless had a
few agents that were extremely dissatisfied might not be
preferable to a slightly higher disutility where all agents were
near that value. Consequently, we added a term to the
collective disutility to capture the variance in reported values,
as measured by the standard deviation of the values:

σ21 lxlUSR += ,

where USR is the collective disutility, x the arithmetic
mean and σ the standard deviation of the reported USAi. The
weighting constants l1 and l2 (l1 + l2=1) are used to tune the
contribution of each component to the calculated disutility.

In a manner similar to the calculation done for the AD
agent, the SR agent determines a satisfied predicate, SRsat
which indicates whether the aggregate disutility is less than
the permitted variance SRsat = (USR ≤ ∆USR). If SRsat is true, the
SR agent is satisfied with the current offering.

The SR agent also calculates the courses for the next
proposal even if it is already satisfied. The number of courses
for the STV is either a standard initial value, the size of the
most recent accepted proposal to the AD agent, or one less
than the most recent rejected proposal to the AD agent. This
allows the protocol to converge more rapidly on an acceptable
solution by initially jumping by several courses before
dropping down ultimately to one course at a time for the final
negotiations. It also allows us to use STV more optimally, as
its value is more readily apparent in elections where several
candidates will be elected.
The SR agent sends its current satisfaction value to the AD
agent, along with the current proposal, which is the output
from the STV election for the specified number of candidates.
The AD agent recalculates UAD based on a projected course
list that is the sum of the current offering list and the courses
in the proposal. If that disutility is smaller than the previous
disutility, the proposal is accepted and added to the current
offering list. This step occurs even if both agents are already
satisfied, to allow the possibility of a final improvement on
disutility before concluding negotiation.

If Asat is true and the SR agent has indicated that the last
round satisfied it, the negotiation is concluded and the AD
agent records the final offering list and sends it to the SA
agents. If the Asat is false, the negotiation will always continue.
If the AD agent is satisfied, but the SR agent is unsatisfied, the
negotiation will continue until the count of courses in a
proposal reaches zero (recall that the SR agent will iteratively
decrease the number of courses after a rejected offer). In the
case that the AD agent still declines to add a course (rejects
even a one course proposal) and the Asat is false (which is only

possible in the case that an earlier iteration overshot by adding
too many courses), the SR agent must continue by submitting
offers that involve removing courses. It does so by iteratively
holding an election with only the current offering list courses
as candidates. The loser (first eliminated course) is sent as a
removal proposal. This continues iteratively until the AD
agent indicates satisfaction. Once the count of courses in a
proposal reaches zero, the SR agent must accept the last
proposal that satisfied the administrator, even if this is the
required courses only. In this way, the negotiation converges
fairly rapidly to a set that is near the budgeted amount for the
department, while trying to add courses most likely to fit into
the plans of the majority of students.

VI. EXPERIMENTS
To evaluate the proposed approach, a prototype was

implemented with JADE (http://jade.tilab.com), which allows
simulating different scenarios by varying several parameters,
such as the course number of the program, the divergence of
preferences for course selection, or the must-offer courses due
to emergence cases. We simulated a collection of MSc IS
program students shown in Table 1 consisting of 88 students.
Given that a course set cn

iicC 1}{ ==

to be offered in a semester
in the program, the actual cost to be paid for the course
offering is calculated as follows:

∑
=

+=−=
cn

i
icidealAD hrnbCCostCostCCostU

1
)()(,)(,

where b is the base salary for one course to be paid to the
instructor for the course, e.g., b = $5000; r is the amount of
money to pay to the instructor for one student, e.g. r = $500; hi
is the number of the students who will take course ci for 1≤i
≤nc, and Cideal =$75,000.; nc = 88 ; C0 = {c501, c503, c504, c601,
c695}; C-1 = {c602, c604, c617, c636 c637, c682}; ∆UAD = $100; ∆USR
= 3.

Table 1: simulation results

Round R2 R3 R4 R5

ci H1 V2 H2 V3 H3 V4 H4 V5 H5
c501 23 0.2 12 9 9 9
c503 17 0.2 14 13 13 13
c504 11 0.2 9 8 8 8
c601 20 0.2 15 13 11 11
c695 6 0.5 6 6 5 5
c607 0.2 0.2 0.2 1.2
c605 5.0 12 10 10 10
c602 1.6 1.6 1.6 1.6
c610 0.7 0.7 0.7 1.7
c648 2.0 2.0 2.0 4 3
c691 60. 64 0.5 64 64 64
660 1.0 1.0 1.0 1.0
c689 1.0 1.0 1.0 2.0 11
c667 1.7 2.0 2.0 12 12

In R1: C1 = C0 U{c602, c605, c607, c610, c648, c660, c667, c689,

c691}. Getting hi shown in column H1 of Table 1. UAD(C1) =
$11500.0. In R2: c691 is chosen in this round, with a voting

result of 60. Getting h691= 64 shown in H2 in Table 1 since it
is the first course chosen, and many students have it as their
first pick due to it being on many plans and not having many
prerequisites. UAD(C1)= $15000.0. Comparing Cideal, the
Administrator is still not satisfied with required courses. The
SR agent is also unsatisfied with course offering as SR
Weight: 10.31. After R3 and R4, in R5, the required 9 courses
are: C0, c691, c605, c648, and c667. The votes for this round are
shown in V5 of Table 1. c689 is chosen in this round, with a
result of 2.0. UAD = $48,000. So the AD agent is still
unsatisfied with the list. The SR agent is now satisfied with
course offering. The SR agent’s weight is 0.86. Negotiation
concluded with a list: C1 = C0 U {c691, c605, c648, c667}. The size
limit of a class is not considered.

VII. CONCLUSIONS
COD is a complex task that requires the ability to search,

schedule, and coordinate a set of participating entities under
various constraints and uncertainties. We show that the MAS
approach is an enabling technology to automate the dynamic
COD through voting mechanism and negotiation. This paper
focuses on the architecture, mechanisms of preference
aggregation, and agent negotiation. This architecture provides
several advantages:

(1) uncoupling the implementation of discrete or
competing concerns;

(2) using relatively simple agents to combinatorially
generate complex emergent behavior through their
interactions;

(3) encapsulating the representation of a single human
principal’s preferences and goals into a single agent; and we
can simulate the formal interactions amongst human
principals—and produce similar results without requiring
those interactions to take place.

The use of the STV-like protocol permitted us to
implement a single agent that served as a representative for the
entire student body, communicating with the individual SA
agents that represent their specific human principals. The
effectiveness of the approach has been demonstrated via the
experiments. Real life implementation of these methods in
undergraduate and graduate programs of educational
institutions can be expected in the near future.

ACKNOWLEDGMENT
We thank Natural Science and Engineering Research

Council (NSERC) of Canada and Athabasca University of
Canada for the financial support to the research. Also, we
thank anonymous reviewers for their constructive comments.

REFERENCES
[1] V. Conitzer, "Making decisions based on the preferences

of multiple agents." Communications of ACM, Vol. 53,
No.3, 2010. pp. 84-94.

[2] N. R. Jennings, "An agent-based approach for building
complex software systems." Communications of ACM, Vol.
44, No.4, 2001. pp. 35-41

[3] A. Graesser, P. Chipman, B. Haynes, and A. Olney,
"AutoTutor: an intelligent tutoring system with mixed-
initiative dialogue." IEEE Transactions on Education, Vol.
48, No.4, 2005, pp. 612–618.

[4] A. Mitrovic and S. Ohlsson, "Evaluation of a constraint-
based tutor for a database language." International Journal
on Artificial Intelligence in Education, 10, 1999. pp. 238-
256.

[5] D. C. Wilson, S. Leland, K. Godwin, A. Baxter, A. Levy,
J. Smart, N. Najjar, and J. Andaparambil, "SmartChoice:
An Online Recommender System to Support Low-Income
Families in Public School Choice." AI Magazine, Vol. 30,
No.2, 2009, pp. 46-58

[6] F. Lin, Kinshuk, R. McGreal, S. Leung, D. Wen, F. Zhang,
Q. Li, and X. Liang, "e-Advisor: A Web-based Intelligent
System for Academic Advising." International
Transactions on Systems Science and Applications, 4(1),
March 2008, pp. 89-98.

[7] M. Oprea, "MAS UP-UCT: A multi-agent system for
university course timetable scheduling." International
Journal of Computers, Communications & Control, II(1),
2007, pp. 1024–1020.

[8] J. Vassileva, G. McCalla, and J. Greer, “Multi-Agent
Multi-User Modeling In I-Help,” User Modeling and User-
Adapted Interaction. Volume 13, Issue 1-2, February -May
2003, pp. 179 - 210

[9] M. S. Hamdi, "MASACAD: A Multiagent-Based
Approach to Information Customization." IEEE Intelligent
Systems, Vol. 21, No. 1, 2006, pp. 60-67.

[10] M. P. Tariq, M. W. Mirza, and R. Akbar, "Multi-agent
Based University Time Table Scheduling System
(MUTSS). International Journal of Multidisciplinary
Science and Engineering, Vol. 1, No. 1, September 2010,
pp. 33-39

[11] A. Vainio, and K. Salmenjoki, "Improving Study
Planning with an Agent-based System." Informatica, 29,
2005, pp. 453–459.

[12] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos,
and D. Poole, "CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference
statements", Journal of Artificial Intelligence Research
(JAIR) 21, 2004, pp. 135–191.

[13] J. J Bartholdi and James B Orlin, Single Transferable
Vote Resists Strategic Voting." Social Choice and Welfare,
8, 1991, pp. 341-354

[14] J. Lang, "Vote and aggregation in combinatorial domains
with structured preferences." In Proceedings of the 20th
International Joint Conference on Artificial Intelligence
(IJCAI'07), Rajeev Sangal, Harish Mehta, and R. K. Bagga
(Eds.). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2007, pp. 1366-1371.

[15] T. Walsh, "An Empirical Study of the Manipulability of
Single Transferable Voting," Proceedings of the 2010
conference on ECAI, IOS Press. 2010, pp. 257-262

[16] J. S. Rosenschein and G. Zlotkin, Rules of Encounter:
Designing Conventions for Automated Negotiation among
Computers, 1994, MIT Press.

	COD
	IC2012_Lin_CRV
	I. introduction
	II. Literature Review
	III. System architecture
	A. Agent Types
	B. Agent Interactions

	IV. Vote Generation by SA agent
	A. Preference representation
	B. Generating Fractional Votes
	C. Election Protocol
	D. STV-based Election Process

	V. Negotiation Protocol
	A. Disutility function of the AD agent:
	B. Disutility function of the SA agent
	C. Negotiation process

	VI. experiments
	VII. ConclusionS
	Acknowledgment
	References

