
184 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

Integrating Agents and
Web Services into

Adaptive Distributed
Learning Environments

Fuhua Lin
Athabasca University, Canada

Larbi Esmahi
Athabasca University, Canada

Lawrence Poon
Athabasca University, Canada

Abstract

This chapter discusses an integrated approach to designing and developing
adaptive distributed learning environments. It presents a distributed
learning environment based on agent technology and Web services
technology. Agents are expected to be used as the core components in
intelligent distributed learning environments because of their inherent
natures: autonomous, intelligent, sociable, etc. However, to integrate
agents into existing legacy learning environments or into heterogeneous

Integrating Agents and Web Services 185

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

learning environments, one may encounter many difficulties. They may be
technical issues, economical issues, social issues, or even political issues.
Web services technology, on the other hand, characterized by its
standardized communication protocol, interoperability, and easy
integration and deployment, is an excellent complimentary partner with
agents in distributed learning environments. The integration of Web
services and agents simplifies the complexity of development, saves time,
and, most important of all, makes distributed learning environments
feasible and practical. To take advantage of the merits of agents and Web
services, we advocate agent-supported Web services in designing and
developing distributed learning environments.

Introduction

Over the last few years, universities and colleges have made substantial
progress in using the Internet to deliver courses. This is referred to as “e-
learning” or digital learning. This trend blurs the differences between informa-
tion technology applications in education and distance education. While taking
courses, students on campuses often extensively acquire distributed learning
resources, communicate, and collaborate with other teachers and learners
anywhere and at any time. Therefore, campus-based education and distance
education, to some extent, tend to be integrated. As well, distance training is
frequently used in enterprise training. Distance education and training devel-
oped rapidly over the past several years. The research on distance education
and distance training has become one of the hottest fields in educational
technologies.

The Internet and Web-based distributed learning can potentially deliver
personalized course materials and services, and therefore, are potentially able
to accommodate a larger variety of learners than what can be accommodated
currently.

A distributed learning environment can be implemented practically by using a
set of Web services. These Web services offer a set of software artifacts and
technologies that service providers or users can modularize and encapsulate
with well-defined standard interfaces, host on their platforms of choice, manage
and run either locally or remotely, transport over the Internet or any intranet by
using standard protocols over and above TCP/IP, locate from central regis-

186 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tries, and exhibit near plug-and-play characteristics with an environment (Geng
et al., 2003).

The dynamic and distributed nature of both resources and applications in
distributed learning environments requires that software does not merely
respond to requests for information but intelligently adapts and actively seeks
ways to support learners and educators. Agent technologies have become
some of the primary weapons in the arsenal aimed at addressing the emergent
problems and managing the complexity of such environments. The agent-based
approach is suitable for supporting distributed learning, because relationships
among learners, courses, and instructors last for a considerable period of time.
Software agents can be implemented in a granular fashion, achieving results
quickly. Intelligent software agents contain a level of intelligence.

The purpose of this chapter is to discuss how to facilitate the creation of
dynamic, intelligent, and autonomous services to achieve adaptive distributed
learning using intelligent software agents and agent-supported Web services.

Background

Distributed Learning vs. Distance Learning

Traditionally, distance learning has emphasized delivering educational re-
sources to learners in remote districts or working full-time, and providing the
opportunities for open education. Distributed learning, however, enables
learners to get and use educational resources distributed in different remote
places. In distributed learning, the learners may be either on or off campuses.
Distributed learning is based on networked learning environments. With both
distance learning and distributed learning, the instructor and the learner do not
have to be in the same physical location at the same time.

Distributed Learning Environments

A distributed learning environment in the real world can be examined in several
ways. One way is to think about the main educational components and the
interactions among them and their environments. Our analysis of distributed
learning environments begins with an overview of the various entities compris-

Integrating Agents and Web Services 187

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ing the distributed learning environments and then the relations among the
various entities.

IEEE’s learning technology systems architecture (LTSA) provides a model for
studying learning environments (http://ltsc.ieee.org/). LTSA is generic enough
to represent a variety of different learning systems from different domains.
Figure 1 shows the model used by IEEE’s LTSA. In the model, the learner
entity is an abstraction of a human learner. The learner entity receives the final
multimedia presentation, while the learner’s behavior is observed, and learning
preferences are communicated with the coach. Then, the coach sends queries
to the learning-resources component to search for learning content appropriate
for the learner entity. The queries specify search criteria based, in part, on
learning preferences, assessments, and performance information. The appro-
priate locators (e.g., learning plans) are sent to the delivery process. The
learning-resources component stores “knowledge” as a resource for the
learning experience, and the queries can be searched in this repository. The
matching information is returned as catalog information, i.e., a set of content
tags that can also be seen as “card catalog” entries. The locators are then
extracted from the catalog information and used by the delivery process to
retrieve learning content and deliver that content as a multimedia document to
the learner. The components to the right of the learner entity correspond to
performance control. Performance is measured by the evaluation component,

Figure 1. IEEE’s LTSA

188 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and the measurements are stored in the records database. The coach, when
locating new content, can then use the data in the records database.

An Example

The learning environment of Athabasca University (AU) (http://
www.athabascau.ca) can be viewed as an example of such an architecture. It
has the following core components: the Learner, the Peer, the Instructor, the
Content, the Tutor, the Administrator, the Course Production Team, and the
Secretary. The “Learner” is an individual who receives a course from the
system. The collection of individuals who receive the same course from the
system within the same time frame and from the same instructor is referred to
as the “Peers.” The “Instructor” or “Coordinator” is an individual who
facilitates the delivery of pedagogical resources by performing a number of
administrative tasks, including course-content sequencing, tutor recruitment

Figure 2. Illustration of the main educational components and dependency
model of Athabasca University, Canada

Integrating Agents and Web Services 189

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and coordination, learning-progress assessment, learner guidance, authoriza-
tion of the learners, and advancement of higher modules. The “Content” is the
knowledge resources shared by the participants in the learning system. The
Content can be divided into three categories: administrative content (activi-
ties), pedagogical content (materials), and reference content (library). A
“Course” is a subset of the content, possibly supported by distributed knowl-
edge resources (e.g., learning objects repositories), facilitated by one instruc-
tor and delivered to a well-defined set of learners. The “Tutor” is an individual
who answers the course-related questions of the Learner. The “Administrator”
is an individual responsible for planning programs. The “Course Production
Team” is responsible for course design, production, and management. The
“Secretary” is responsible for student registration, student-information man-
agement, and staff-information management. Figure 2 illustrates the main
educational components and dependency model of a generic distributed
learning environment.

The dependency of the components is also illustrated in the figure. For example,
the Learner depends on the Content to get course materials.

The life cycle of a distributed learning course begins with the course planning.
The next stage involves course development, in which the course is designed
and developed by a team of course developers consisting of professors,
editors, and visual designers. Then the course package is delivered to students
via the Web or seminars under the coordination and facilitation of an instructor.
One or more tutors may be needed for tutoring the course, depending on the
size of the class. The course continually goes through course evaluation and
course revision until it is closed.

The main advantages of distributed learning over traditional classroom-based
learning and traditional distance education are (a) flexibility in the time and
location for learning, (b) interactivity among the learning elements due to the
Web’s multimedia capability, and (c) interactions among instructors, tutors,
and learners in synchronous and asynchronous modes. Furthermore, distrib-
uted learning has the potential advantages of providing access to distributed
educational resources for course authors and students, personalized course
materials for individuals, and virtual learning communities for collaborative
learning.

However, both distributed learning and the development of distributed learning
environments are associated with some challenges.

190 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Issues and Challenges

In most of the existing distributed learning systems, the instructors arrange the
course materials in order to cover one or more topics. For example, in Web-
based distributed learning environments, the course materials are placed online
to make them downloadable or visible to the students, who can use them by
following the path established by the instructors. Currently, Web-based
distributed learning has the following problems.

First, in terms of system development, software systems for distributed learning
are typically complex, because they involve many dynamically interacting
educational components, each with its own need for resources, and involve
engaging in complex coordination. Developing a monolithic system that could
meet all requirements for every level of the educational hierarchy would be very
difficult, because no single designer of such a complex system could have full
knowledge and control of the system. The systems have to be scaleable and
accommodate networking, computing, and software facilities that support
many thousands of simultaneous distributed users using different operating
systems that can concurrently work and communicate with each other and
receive adequate quality of service support (Vouk et al., 1999). Such systems
should be easy to extend. A small change in the domain knowledge should not
require an intensive system-wide modification to alter the information and all the
functions that initiate actions based on that changing information.

Second, the existing Web-based learning management systems are not con-
cerned with individual learner differences and do not adjust to the profiles of
individual students (regarding actual skills, preferences, etc.). Currently, we
use a curriculum designed just for a specific segment of the potential student
population. We build courses around textbooks and other materials designed
for that curriculum and do not understand students’ situations and requirements
and do not utilize the possible contributions that students can make to the
learning content and process. As the number of distributed learners increases,
serious efficiency problems in course development and maintenance will occur
when course developers try to generate personalized course materials.

Third, no appropriate support exists to help handle the constantly increasing
demand for and extension of information. As a result, instructors may be
spending more time teaching in distributed learning environments than they
would spend teaching the same course in a classroom setting. The problem
results mainly from the use of generic communication tools, such as e-mail and

Integrating Agents and Web Services 191

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

computer conferences, which have imposed a significant workload on educa-
tors. Because students can participate at any time, this technological advantage
also demands more effort from the instructor, the tutor, and the supporting staff.
They need to be more responsive at nearly any time.

Fourth, in such a distributed learning environment, the instructors and tutors are
not always available online, so the interactions between instructors and tutors
and students are asynchronous. As a result, the need for assistance for students
is particularly salient.

Last, the features of Web processing (caching and client-side information
hiding), in most cases, obstruct the collection of student-performance data.

Solutions and Recommendations

Adaptive learning Environments

An adaptive learning environment is a learning environment in which an
automatic modification is performed at usage time, i.e., during the educational
session, and is based on the learner’s characteristics. These characteristics,
such as the learner’s familiarity with the educational subject and the learner’s
goals and interests, are assumed to be continuously modified during the same
educational session. These characteristics are not known prior to each educa-
tional session and are automatically detected by the system, through monitoring
the learner’s actions. According to Jones and Winne (1992), adaptive learning
environments can be viewed as the intersection of two traditionally distinct
areas of research: instructional science and computational science.

We call an adaptive learning environment for distributed learning a “distributed
adaptive learning environment.” The main features of such environments are
adaptivity and distribution.

Adaptivity

Adaptivity includes adaptive curriculum planning, adaptive sequencing, adap-
tive course generation and delivery, and adaptive testing. Adaptivity needs
intelligence. We need some intelligent tools that are “smart” enough for the

192 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tasks at hand. These tasks need highly deliberative tools for mining databases
of learner information and educational resources and taking the collective task
knowledge contained in the heads of the educators and codifying it into
software systems.

Distribution

From IEEE LTSA, we can see the dynamic and distributed nature of data and
applications in distributed learning environments. Therefore, a common under-
standing seems to be that a distributed learning system must consider a
decentralized approach in which overall management is performed “centrally,”
but course materials (hypertext documents, multimedia documents, technical
manuals, scripts, and other applications) are served up locally by using various
pieces of software that run on the students’ machines (Wang & Holt, 2002).
Interactivity and intelligent tutoring capabilities (i.e., various help facilities) must
be provided by client-side software, as well.

Unfortunately, none of the currently available distributed learning systems
delivers these advanced functionalities, mainly because of the complexity and
heterogeneousness of the systems and the lack of methodology for systems
modeling, in particular, knowledge modeling.

Web Services Based Approach

A “Web service” is an accessible application that other applications and
humans can automatically discover and invoke. An application is a Web service
if it is (a) independent as much as possible from specific platforms and
computing paradigms; (b) developed mainly for interorganizational situations
rather than for intraorganizational situations; and (c) easily able to be integrated
(i.e., combining it with other Web services does not require the development
of complex adapters) (Dale, 2003).

Web services fundamentally offer new ways of doing business through a set of
standardized tools, and they support a service-oriented view of distinct and
independent software components interacting to provide valuable functionality.
In learning systems, a learning services architecture and learning services stack
have been proposed by the Learning Systems Architecture Lab at Carnegie
Mellon University. These provide a framework for developing service-based
learning technology systems (LSAL, 2003). In this approach, rather than

Integrating Agents and Web Services 193

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

building large, closed systems, the focus is on flexible architectures that provide
interoperability of components and learning content, and that rely on open
standards for information exchange and component integration (Blackmon et
al., 2003).

However, Web services technologies have several limitations (Huhns, 2003):
a Web service knows only about itself, not about its users, clients, or
customers; Web services are not designed to use and reconcile ontologies
among each other or with their clients; Web services are passive until invoked
and cannot provide alerts or updates when new information becomes available;
and Web services do not cooperate with each other or self-organize, although
they can be composed by external systems.

Due to these limitations, Web services cannot completely overcome the
information overload issue in distributed learning environments. Overcoming
these limitations appears to require agent-like capabilities.

Intelligent Software Agent-Based Approach

We believe that the software engineering challenges involved in developing
large-scale distributed learning environments can be overcome by using an
agent-based approach. We can design some processes in a distributed learning
system as autonomous, cooperating components that communicate intelligently
with one another, automate or semi-automate educational processes, and
interact with human users at the right times with the right information.

Agent-oriented software engineering (AOSE) has become one of the most
active areas in the field of software engineering. The agent concept provides a
focal point for providing accountability and responsibility for coping with the
complexity of software systems during design and execution (Eric, 2001). The
agent-based approach to developing complex distributed systems has been
successfully applied and documented in many domains, including air-traffic
control, manufacturing, information retrieval, network management, and enter-
tainment (Wooldridge & Jennings, 1995).

What are “Agents”?

Agents are software programs that operate autonomously when triggered and
perform tasks of repetitive nature. Research on agent-based computing has

194 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

evoked much interest in multiagent systems (MAS). For intelligent agents to
solve problems efficiently, they must cooperate and communicate with each
other. A MAS is described, according to O’Hare and Jennings (1996), as “a
loosely-coupled network of problem solvers that work together to solve
problems that are beyond their individual capabilities.” Similarly, the various
MASs should be able to interact with each other in the form of virtual
communities. The logical extension of MASs is “agent societies”—groupings of
agents that come together to collaborate to meet certain common goals
(Dellarocas, 2000).

Why Agents?

Agents probably have two main advantages in this context. First, distributing
tasks to numerous specialized, fine-grained agents promotes the modularity,
flexibility, and incrementality of learning systems and lets new services come
and go without disturbing the overall system. The agents have their local
knowledge about specific tasks and their autonomy. Limiting the complexity of
an individual agent simplifies control, promotes reusability, and provides a
framework for tackling interoperability. Second, agents’ autonomous
nature makes their use a “fire-and-forget” approach, as they are able to react
by themselves if they have access to the right data. This central feature of
software agents, the ability to independently carry out tasks delegated to them
by people or other software, reduces the workload of users.

For example, the vast educational resources available today or tomorrow
simply could not function without being able to delegate to software the
multitude of tasks that would otherwise be left to armies of people to handle.

Some Related Work

Greer et al. (2001) elaborated the lessons learned from several large-scale
real-world deployments in the I-Help (Greer et al., 1998) agent-based peer-
help learning support system. The software engineering lessons learned are
useful for us in deploying a complex system in the real world for a large number
of users. Gavrilova et al. (1999) described a project involving an intelligent
MAS for distance learning using the Learner model approach. Conceptualized
in the literature (Jafari, 2001) are three types of intelligent agents to assist
teachers and learners. Thaiupathump et al. (1999) investigated the effects of

Integrating Agents and Web Services 195

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

applying intelligent-agent techniques to an online learning environment. These
researchers created the “knowbots” that automated the repetitive tasks of
human facilitators in a series of online workshops. The findings indicated that
the use of knowbots was positively associated with higher learner completion
rates in the workshops. Lin and Holt (2001) identified the roles of agents in
distributed educational activities. Baylor (1999) defined three major potential
educational uses for agents as cognitive tools: (a) managing information
overload, (b) serving as pedagogical experts, and (c) creating programming
environments for the learners (Baylor, 1999).

The application of agent-based systems to commercial complex distributed
systems has generated tremendous interest. However, researchers have been
very slow in developing this technology for commercial applications, mainly
because of the lack of an accepted industry-standard method for the develop-
ment and implementation of agent-based systems (Sturm et al., 2003).

Agents

In a distributed adaptive learning environment, agents are seen as software
entities that pursue their objectives and perform their tasks while taking into
account the resources and skills available to them. The resources include human
users, other agents, information, and data. Therefore, we can divide all agents
in distributed learning environments into three categories: (a) personal agents,
(b) task agents, and (c) regulatory agents.

Personal Agents

A “personal agent” is a virtual representation of a human user operating in a
distributed adaptive learning environment and is comprised of several subcom-
ponents that act together to perform the functions required of the agent.

First, a personal agent has a unique identity, which allows it to be recognized
by other users as well as gives credibility to the transactions that the virtual self
may engage in subsequently.

Second, a personal agent has a memory function that stores the user’s
preferences, which may be explicitly indicated by the user or learned from past
experiences. Similarly, the personal agent also learns from interaction with
other agents. For efficiency purposes, the memory module is able to “forget”
information that is not used, avoiding storage overload.

196 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Third, the personal agent possesses a processing capability that serves the dual
purpose of resource allocation and coordination of functions, e.g., prioritization
of various tasks set by the user. To do so effectively, the processing capability
interacts with the memory component, as well as with the external sensors, to
generate a response. Last, the personal agent contains an internal audit function
with the role of monitoring the status of the agent for maintenance purposes as
well as restricting the agent’s behavior to a generally accepted code of agent
practices. To become effective, the personal agent must be able to sense new
developments in the environment, filter the variety, as well as effectively
respond to changes in the environment.

Task Agents

A task agent is required to perform certain specific tasks, such as providing
services, knowledge, and information resources, and also providing interme-
diary functions such as coordinating and communicating with the other agents.
Therefore, the task agent’s memory contains specific task-related information
in greater depth than the personal agent’s memory possesses. The task agent
also has a monitoring and learning function that allows it to update its own
information through new updates when necessary. Because the task agent is
deemed a “common resource” shared by many users, its processing capability
comprises a spooling function, in which requests are queued in accordance to
their priority. In performing multiple tasks, the resource allocation function
determines how many resources should be provided to each uncompleted task.

An Example of Task Agents—User Profile Agent

User profiles represent the users’ information needs and preferences. Such
profiles can take a variety of forms, ranging from sparse-vectors of document
ratings to rich, highly structured representations based upon XML. A profile
may be located entirely within the locus of the user’s control, e.g., on his or her
own personal computer (PC) or personal digital assistant (PDA), or may be
retained as one of many profiles on a server controlled by a Web service.
Recently, some research has begun to focus on a more distributed approach,
in which the Web service needs to be able to deal with the security or privacy
of user profiles, and how users can find relevant information even if they do not

Integrating Agents and Web Services 197

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

want to reveal too much of their profiles. A user profile agent can be developed
to fulfill these requirements.

Regulatory Agents

The regulatory agents primarily perform the following two functions, setting
standards and auditing. The regulatory agents are separated at various levels
and are mainly localized regulatory agents and international regulatory agents.
In their standard-setting role, the international regulatory agents set standards
mainly for the baseline requirements to which each agent must comply. In turn,
the personal agents and the task agents, which constantly monitor the external
environment, update their respective baseline requirements to include the latest
standards. As an illustration of the rules constituting these baseline require-
ments, universal rules such as the following are to be included: (a) agents will
not harm their masters, (b) agents will not harm other agents, and (c) agents will
have to protect themselves from other agents.

In their auditing roles, the international regulatory agents will audit the localized
regulatory agents, which in turn, audit the personal agents and the task agents.
The scope of the audit services includes the accuracy of an agent’s baseline
requirements, the program’s integrity (the audit will look for any virus infec-
tion), and so on. As mentioned earlier, the personal agents and the task agents
have limited life spans. At regular intervals, individual personal agents and task
agents must report to their localized regulatory agents for a thorough audit
screening in order to extend their life spans.

Agent Interactions

The interaction among various agents and, subsequently, among various MASs
is based on accepted standards and principles and forms the basis of the
interactions among the intelligent agents’ societies.

User—Personal Agent Interactions

The major purpose of personal agents is to help (rather than replace) users in
handling complexity in the environment. We will explain how a human user and

198 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the personal agent of the user interact through the three stages: configuration,
processing, and presentation.

Configuration

Here, the human user configures his or her personal agent’s personality, goal,
and other characteristics based on the human user’s beliefs, values, desires,
and intentions. This configuration forms the “DNA” of the personal agent. The
instructions must be precise, not open to interpretation, and coherent with the
baseline requirements. Also, another source of input comes from the external
environment, which is constantly changing, churning out new information
exogenously. The agent is constantly learning from interactions with the external
environment, adding to its wealth of experience.

Processing

Based on the human user’s predetermined preferences and from its learning of
the user’s unspecified and hidden preferences through observation over time,
the personal agent is able to filter the information from the data smog in the
environment and extract the relevant information of interest to the user.
Subsequently, the personal agent classifies, summarizes, and presents the
extracted information in the desired form to the user.

Presentation

The content of the output report is that of highly personalized and topic-based
information according to the user’s preferences and desires. Moreover, this
content is highly relevant, as it is based on real-time events. The content can be
presented by multimedia. The determination of the type of presentation format
is in accordance with the users’ preference and the inherent limitation of the
delivery devices. For example, a message in a text format has to be carried as
text in the form of a short message system (SMS) if the user is to access the
message by using a mobile phone. In a situation in which the user is accessing
his or her PDA, then the report can be translated into video form to provide a
richer medium to the user. Users can specify how their personal agents can
contact them when the users are away from their desks, for example, by
desktop computer, mobile phone, or PDA.

At times, the users will want to initiate a conversation with their personal agents
when the users are away from their desks. If so, the users can log on to any

Integrating Agents and Web Services 199

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

terminal, stipulating a password to authenticate them in order to access their
personal agents.

Agent–Agent Interactions

The interactions among agents can be divided into three major categories:
Personal Agent–Personal Agent, Personal Agent–Task Agent, and Task
Agent–Task Agent.

Personal Agent (PA)–Personal Agent (PA)

Communication between two personal agents is important, because they are
expected to learn, not only from their past errors, but also from the experiences
of other personal agents. Similarly, two or more PAs can collaborate on similar
tasks. Just as humans can cooperate in the real world, groups of agents can
cooperate with one another to achieve a common purpose. For effective
collaboration to take place, personal agents, each with separate competencies,
need to coordinate their actions with various task agents. Individual PAs in the
environment may take up different roles in a group, e.g., notification, monitor-
ing, and coordination. Moreover, PAs may be hostile to one another. However,
based on the baseline requirements, PAs are not allowed to harm one another.

Personal Agent (PA)–Task Agent (TA)

At times, a personal agent needs to interact with one or more task agents in
carrying out its assignment. The communication of the personal agent and the
task agent(s) varies according to two situations. When the personal agents
know the task agents, i.e., when the PAs know explicitly which task agent they
wish to contact, this knowledge facilitates direct communication. On the other
hand, when the personal agent does not know the identity of the task agents in
question, then the use of Web services comes into play.

Task Agent (PA)–Task Agent (TA)

The interaction between two task agents is similar to the Personal Agent–Task
Agent interaction.

200 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Regulatory Agents–Other Agents

As mentioned earlier, the role of the regulatory agents is to set new standards.
Hence, the international regulatory agents set new standards and broadcast
them to the international service providers, which then disseminate the stan-
dards down to the local service providers. The other agents, e.g., the personal
agents and the task agents, which are constantly monitoring for the latest
updates on their respective service providers, in turn, update the latest
standards into their baseline requirements. At intervals, the local regulatory
agents then ensure that the personal agents and the task agents have accurately
and promptly updated their baseline requirements with the latest standards. If
the local regulatory agents discover any noncompliance, they correct the
mistake themselves and, at the same time, file a report to the owner of the
personal agent.

Examples

Agents and Web Services for Courses

The development of agents for courses or course agents involves pedagogy,
learning design, and learner modeling. The pedagogical basis of course
agents can be built on two underlying educational philosophies: objectivist and
constructivist. The objectivist assumes the learner is an empty vessel that can
be filled with knowledge. It leads directly to an instructivist or transmissionist
pedagogical approach, where the teacher fills an empty vessel, which is the
student (Phillips, 1997).

The other philosophy, the constructivist epistemology, assumes that the learner
can build on his or her own knowledge based on an existing set of experiences,
so the student is viewed as a “researcher.” A major goal of the constructivist
approach is to ensure that the learning environment is as rich and interactive as
possible.

A course agent can be based on a constructivist learning environment, in which
the student and the student’s agent can explore at will. However, such
discovery learning makes the often-unfounded assumption that the student has
research skills. Therefore, a well-designed distributed learning course should
incorporate the most appropriate aspects of each learning theory (Gillespie,

Integrating Agents and Web Services 201

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1995). We believe that the course agent will be more effective for guided
discovery learning based on a constructivist learning theory. The agent can give
the student control in discovering knowledge, but the discovery process is
supported by additional guidance functions to provide support and feedback.

Personal Agents for Courses

Two types of personal course agents are used in distributed learning: instructor
course agents and learner course agents that assume roles in the participating
protocols of learning activities.

An instructor course agent is an assistant of the instructor, helping the instructor
generate, deliver, and maintain a course. This kind of agent interacts with other
task agents to fulfill the tasks delegated by the instructor, such as broken-link
checking, learning-objects recommendation, notification, monitoring, and in-
formation gathering.

A learner course agent is a simulated instructor that can provide adaptive
course material and instruction appropriate according to the learning process
of the individual learner. This kind of agent can be viewed as an authoritative
representative of the course author and the instructor. It can also interact with
other task agents to carry out the tasks requested by the learner, e.g., answering
frequently asked questions (FAQs). Because a learner’s profile includes the
learning activities he or she has participated in, and the corresponding perfor-
mance can be easily kept in the environment and made available to agents, an
instructor course agent can help the instructor understand learners and make
suggestions. A learner’s profile contains detailed information, such as a
learner’s errors and misconceptions, so in the absence of the instructor, the
agent is able to give advice to learners when they are learning, in the absence
of the instructor (Chan, 1995).

Task Agents for Courses

The task agents include course-planning agents, course assembly agents,
course maintenance agents, and evaluation agents.

A course-planning agent uses information about the learner, resources, and
curriculum-planning knowledge, to construct an optimized course plan. When
a consistent and complete plan is found, it will be presented to both the student

202 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and the instructor for approval. The course-planning agent uses well-known
planning techniques. Each course plan is a curriculum graph. The course-
planning agent creates curriculum plans by finding a chain of learning objectives
that connect the intended final learning goal with the student’s prior knowledge.

After the course-planning agent generates a course plan that partially deter-
mines the learning activities and path, a specific “best” solution for learning
materials is extracted by using some problem-solving mechanism, such as
TAEAS, an heuristic scheduling system (Wagner et al., 1999). TAMES can
produce a comprehensive linear instantiation of one possible solution to the
problem, based on the constraints, such as the preferred time or the quality or
cost of the learning materials. TAEAS generates an initial solution and then
enables the student to alter the parameters to retrieve a second solution. Given
the constraints supplied by the student, TAMES then offers a variety of
solutions.

Once a specific course plan has been approved and scheduled, the student is
given access to the selected resources one at a time, interacting via a browser

Figure 3. The system architecture for course maintenance

Integrating Agents and Web Services 203

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

or other interface. As the student finishes using each resource, the student
model is modified to track the student’s learning progress, until the student
either reaches or abandons the intended learning goal. Difficulties encountered
along the way are handled by replanning.

Course Maintenance Agent

One of the merits of Web-based e-learning courses is that it can provide up-
to-date information. In order to provide current, correct, and complete
materials to students, course instructors need to update e-learning course
materials from time to time. The reasons for Web-based course maintenance
are threefold.

First, materials in courses in ever-changing fields, such as “Computing and
Information Systems,” need to be updated more often than in other courses.
Working in such a dynamic distributed learning environment, course instructors
or instructors often need to review and revise course materials in a short time
frame.

Second, because of the complexity of the materials, and the short development
cycles within which the materials are produced, our best human efforts are
sometimes not adequate to prevent occasional errors from slipping through.
Therefore, students should be prepared to encounter the odd minor “glitch” in
online courses. However, course instructors should make the necessary
adjustments for the benefit of students. Whenever there is a significant change
in the content of designated Web pages, students who are interested in the topic
and all students who are taking the course will be notified by the course
instructor via e-mail.

Third, Web-based course materials have many hyperlinks. These hyperlinks
need to be maintained regularly to ensure their availability. However, it is
common for an online course to have a few hundreds of hyperlinks. These
hyperlinks can be broken for many reasons: Web servers may be down
because of hardware failure, Web pages may be relocated to another server,
or power may be cut off in another part of the world. To maintain these
hyperlinks solely by human efforts is becoming more difficult, if not impossible.
The degree of difficulty is hard to comprehend if we consider the fact that
hyperlinks can be “dead” and “alive” at different points of time. The need for
an automated system to help course instructors maintain hyperlinks is pressing.

204 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The system consists of a couple of Web services located in different places. The
Web services include notification Web service, Web monitoring Web service,
student information Web service, and instructor information Web service.

There are two types of task agents supporting the Web services: Web
Monitoring Agent and Notification Agent. As Web services, they have a dual
nature that combines characteristics of Web services technologies and agent
technologies: the abilities to be published, found, and called as a service, and
the ability to move from platform to platform and make autonomous decisions.

The Web Monitoring Agent is to monitor targeted Web pages and determine
whether or not the content in those pages has been significantly changed. The
meaning of “significantly changed” is based on a couple of predefined criteria.
For examples, the number of hyperlinks or photos increased or decreased, or
the content lengths of the Web page increased or decreased by examining its
MIME header. If it discovers such changes, it will trigger a Notification Agent
to send a message to those students who are interested in receiving the
message. Figure 3 shows the system architecture.

Agent Management Web Service

The Agent Management Web service serves as a front end for agent manage-
ment and deployment through Web technology. A registered user can log-in to
download an agent platform and his or her favorite personal agent. Download-
ing can be through FTP or HTTP protocol. Once logged in, a user can update
his or her account information or supply necessary information for agents to run.
For example, a course instructor can provide his or her course information,
such as a course name and its base hyperlink, so that later, a Notification Agent
and a Web Monitoring Agent can make use of this information in order to
process the course instructor’s request.

The Agent Management Web service also acts as a proxy to an UDDI registry.
It assigns unique agent identifications to agents and records agent information,
such as Agent Type, and relays these data to an UDDI Registry. The Personal
Agent can search from the registry and invoke services provided by the Agent
Management Web service. For example, the Personal Agent can ask for the
location of a Web Monitoring Agent that is free to work for the user.

The Agent Management Web service is also a Web services provider; it can
serve SOAP-compliant clients by exchanging SOAP messages so that users
can embed the results returned by the agents into their applications. For
example, a course instructor can embed the broken hyperlinks, found by the

Integrating Agents and Web Services 205

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Web Monitoring Agent, into his or her Web e-mail application, and send them
to students or build his or her course Web pages with the logics taking care of
the results returned by the Agent Management Web service. Without coupling
with Web Services, agents can notify the course instructor, even though there
is a time gap between the broken links found and remedial actions taken.
Coupling agents with Web Services, a course instructor has no urgent need to
care about the remedial actions if contingent actions had already been taken.

A Personal Agent, as a client of a service, can perform searches of different
entries stored in a UDDI. It can then make message and RPC style calls to a
Web Service. A Personal Agent is also an interface between the user and the
multiagent platform. Through the Personal Agent, a user can manipulate the
options provided by other agents. For example, a course instructor can choose
how often to receive e-mail from the Notification Agent if broken links are
found from his or her course materials. The Personal Agent abides on the
platform of the user’s computer. Different groups of users are assigned different
types of Personal Agents. The assignment is based on their roles in the system.
For example, the Personal Agents for course instructors are different from
those of the students. Course instructors can choose under what conditions
they should be notified if the contents of external links are changed. A Personal
Agent is GUI driven and can be used to control all the agents with identification
registered under the user name.

Web Monitoring Agent-Supported Web Service

A Web Monitoring Agent has two functions: one is to detect broken links, and
the other is to detect Web content changes. It scans the given pages periodi-
cally. When the agent detects a significant change (e.g., the link is broken), it
sends a message to the Notification Agent.

Most of the work is done by agentized and multithreaded class Spider
(www.JeffHeaton.com). A queue named Workload holds the base URL to be
processed.

Step 1: A spider opens a connection to the base URL by openConnection().

Step 2: If the connection is failed, the whole process stops.

Step 3: If the connection is successful, the spider parses the Web page to find
all the URLs and put them into Workload.

206 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Step 4: The spider checks other information from the MIME header, such as
Last Modified, Content Length, etc., and stores this information in the
database for comparison purposes.

Step 5: Then the spider opens a connection to the next URL in work.

Step 6: If connection is failed, the spider will report this URL as broken links,
store the URL in the database, and open another URL in Workload.

Step 7: If connection is successful, the spider repeats Steps 3 to 6.

Step 8: The spider stops to work until there are no more URLs in Workload.

Notification Agent-Supported Web Service

Incorporating Notification Agents into the system is one of the ways for the
MAS to give responses to users. Notification Agent is responsible for sending
e-mail on behalf of other agents in the MAS. It is the postman of the whole
community. Whenever an agent needs to send e-mail, it asks a Notification
Agent to do so. The agent packages an agent message with the necessary
details, such as the message, the sender, and the recipient e-mail address, and
forwards the message to the Notification Agent. Once a message is received,
the agent checks the validity of the information and sends the e-mail accord-
ingly. The Notification Agent makes use of JavaMail class to perform the actual
sending. The Notification Agent has no access to sender and recipient
information, this information is provided by other Web services through XML
request messages.

Student Information Web Service

The Student Information Web Service is designed to provide student informa-
tion. For example, it maintains an e-mail list of those students taking courses in
open and distance-learning environments at Athabasca University.

Databases

The database resource includes a student information database, an instructor
information database, and a course link database. The simplified data model of
the databases is shown in Figure 4.

We implemented the agent system for the online course link maintenance using
the architecture shown in Figure 4. The agents and Web services ran on five
different servers for testing purposes. The agents and the agent platforms are

Integrating Agents and Web Services 207

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

written in Java. We deployed the computers at different locations. The
computers, Intel-based Pentium III class machines with 512MB RAM, are
loaded with the following software:

• Red Hat Linux 8.0

• J2SE v 1.4.2

• Apache Web Server 2.047 w/Axis 1.1

• PHP 4.3.3

• MySQL 4.0.14

From preliminary experimental results, the approach proposed is feasible. The
Web Services are provided by Apache Axis. We used JDBC to connect to

Figure 4. Tables for the database

208 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

MySQL databases. Shown in Figure 5 is a screen shot of the Web monitoring
agent.

We are doing experiments to test the scalability and usability of the system. The
experiments will focus on the perceptions of the users regarding the helpfulness
and overall usefulness of the agent system. Perceived satisfaction will be
measured by a questionnaire asking about the students’ perceptions of the
quality improvement of course materials in using the agent. The questionnaire
will also be sent to course instructors and administrators to allow us to compare
the work efficiency, i.e., how many broken links the agent detected, how much
the time between when the course materials were changed and the students
were notified of the change was shortened by using the agent system, and how
much of the course instructors’ time was saved in maintaining course materials
and notifying students and answering students’ questions regarding course

Figure 5. A screen shot of the Web monitoring agent

Integrating Agents and Web Services 209

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

material updates of the agent-supported content management system com-
pared to nonagent course content management systems.

Agents for Learning Objects

The notion of “learning object” (LO) is a new way of thinking about learning
content (Rory et al., 2002). Traditionally, course content comes in a several-
hour chunk called a lesson. Learning objects are much smaller units of learning,
ranging, for example from 2 to 30 minutes. Small, independent chunks of
knowledge or interactions stored in a database can be presented as units of
instruction or information. A learning object is based on a clear instructional
strategy, intended to cause learning through internal processing and action.

Agents for learning objects include locating agents, monitoring agents, notifying
agents, personal agents, and learning objects agents.

A locating agent (LA) is able to accept user interests as keywords and is able
to offer approximate matches, if interests are expressed in terms of subject
taxonomies. Taxonomies are {definition here}. These subject taxonomies can
be large, especially when elaborated by cross-references. They form the basis
for the agent’s ability to make sense of user interests and their relative
relationships to the subject matter of LOs. Our strategy is to provide a learning
object repository (LOR) interface and agents that support students’ learning
through the search process. For instance, the LOR search interface will provide
tools like spell-checking and content-specific thesauri to help sharpen query
formulation.

The Monitoring Agent

A monitoring agent (MA) provides a time-saving way for LOR administrators
to monitor the status of LORs. The MA checks content changes and detects
broken links in LOs, saving administrators from the tedious and time-consum-
ing task of doing this manually. The MA can do these automatically.

The Notifying Agent (NA)

Users specify events of interest and receive notifications by e-mail when these
events occur. These events include identifying new items appearing in a

210 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

repository, new versions of LOs entering a repository, and some broken links.
The NAs attach themselves to a LOR Broker Web service.

Both MAs and NAs accept messages in ACL (agent communication language)
that specify events of interest and the actions they trigger. For example, one
message might ask for e-mail notification whenever a repository adds a new
LO, for example, a Java tutorial. Another message might define filters to extract
articles matching current curricular items from a Web page. Students will also
be able to use these kinds of agents to find relevant information in a timely
manner.

Personal Agent

A personal agent (PA) runs on the user’s machine. It manages the interface that
connects human users to an LOR or network of LORs by

• Expressing user queries in a form that search agents can interpret

• Maintaining user profiles based on specified, default, and inferred user
characteristics

• Customizing the presentation of query results

A PA is able to transfer the anonymous information transacted between itself
and the broker to a specific user. And, the PA applies some more personal
filtering, such as selecting between materials with similar topics but different
human languages. It also ignores offers from the broker that the user has already
seen. The actual learning delivery is primarily under the control of the learning
management system (LMS). The PAs can assist instructors in developing and
managing curriculum materials. For instance, the instructors’ customized
query-planning agent, with its specialized knowledge of pedagogical relevance,
helps instructors quickly search and retrieve material useful in their courses.

Learning Object Agent (LOA)

An LOA is a representative of the author of a LO, able to answer questions
that a learner would love to ask, for example:

Integrating Agents and Web Services 211

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Which sections should I read first?

• Could you show me the most important sections?

• My particular interest is Java Network Computing, and I have half an
hour. What should I read?

• I am lost—help me get my bearings.

The agent contains the reference engine, which applies the rules contained with
the LOs. The agent must also provide a good user interface, possibly graphical
or natural language driven, that can solicit requests from the learner and deliver
responses. It is also responsible for dealing with the LOR agent.

Learning Object Repository Agent (LORA)

While an LOA works on behalf of learners using LOs, The LORAs work for
the dynamic learning object repository. As learning objects are added, LORAs
attend to linking the information, driven by the concept hierarchy, and then
inform LOAs of the new state of the distributed LOR.

Because LORAs have access to the big picture, they can see how the LOR is
being used.

LORA agents watch, listen, and learn how people are using the LOR. When the
LORAs notice certain patterns recurring, they can help a LOA, and hence, a
learner to find relevant information. This would be an application of a neural
network, a program that learns from patterns. The LOAs may temporarily
become users of other LOAs. When a learner poses a request for information
that the LOA cannot satisfy, the agent may contact the LORA and ask for help.
The LORA knows where to go for this help and can call up one or more
different LOAs to supply the agent with the needed information. These LOAs
may be running different inference mechanisms. They are certainly using
different rules and LOs. We are using distributed Blackboard technology as a
method to get these systems to work in a cooperative fashion.

212 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Future Trends

Agent-Supported Web Services

Service-oriented computing is becoming the prominent paradigm for distrib-
uted computing and is creating opportunities for service providers and appli-
cation developers to develop value-added services by combining Web ser-
vices. Web services technology is currently being touted as the ideal solution
to meet the previously mentioned requirements for the dynamic composition of
Enterprise Information Systems (Yang & Papazoglou, 2000).

Agents have the potential to harmonize Web services’ behaviors. The design
of many software agents is based on the assumption that the user needs to
specify a high-level goal instead of issue explicit instructions, leaving the how
and when decisions to the agent. A software agent exhibits a number of features
that make it different from other traditional components (Jennings et al., 1998),
including autonomy, goal orientation, collaboration, flexibility, self-starting
ability, temporal continuity, character, communication, adaptation, and mobil-
ity.

Software agents can play both roles of a Web service client as well as the role
of a Web service. As a client of service, an agent can perform searches of
different entries stored in a UDDI. It then can make message- and RPC-style
calls to a Web service. As a Web service, an agent has a dual nature that
combines the characteristics of the two technologies: the ability to be pub-
lished, found, and called as a Web service and the ability to make autono-
mous decisions.

An agent-supported Web service can include a local information space and a
set of agents supporting the Web service.

A service registry is the medium and services provider for service discovery.

The PA, upon receiving a task from a user, requests a task agent (TA), initiates
a message, and posts it onto the nearest service registry. The message contains
pertinent information, such as the job task, the requirements and criteria for the
job, the expiry date, and ways of contacting the PA.

At the same time, the first respondent (a TA) interested in accepting the offer
indicates that the case is closed to prevent other service providers from
responding to the same message. Subsequently, the first responding TA then

Integrating Agents and Web Services 213

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

keeps in touch with the concerned PA for finer negotiation. When all the
qualified TAs are preoccupied, the message remains outstanding on the service
registry until it attracts an interested TA that is free. For certain tasks that
require a number of service providers bidding for a specific job, the interested
TAs contact the concerned PA, which filters and selects the vendor based on
certain criteria, such as the quoted price and the qualifications.

Web services for distributed learning include knowledge management and
information-resource management. Knowledge-management Web services
manage domain knowledge (ontologies, concepts, etc.) and knowledge about
curriculum planning.

Information resource management Web services include learning object-
repositories management, instructor-information management, tutor-informa-
tion management, and student-information management. These information-
resource management Web services are responsible for getting information
about the resources needed.

To provide efficient and effective Web services, some agents can be deployed
to support the Web services, taking advantage of the autonomy and distribution
of agents. For example, a “spider-like” broken-link-checking agent can be
used to maintain a LOR, supporting the LORs’ management Web service.

Another example is the Ontology Web service. Ontology is a taxonomy
database used for a target language for (a) the terms in the prerequisite and
postconditions of learning objects, and (b) the terms in the learner profiles. An
agent-supported ontology Web service can maintain the ontology knowledge
autonomously when needed.

Knowledge Management

Ontology-Based Domain Modeling

There are two aspects to the obstacles of agent technology in distributed
learning. One is the difficulty of understanding and interacting with data. The
other is agent knowledge modeling. Here, knowledge modeling can be char-
acterized as a set of techniques that focus on the specification of static and
dynamic knowledge resources.

214 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Modeling Curriculum Design Patterns

The emergence of design patterns for dealing with chaotic systems has
applications in many fields. The real issue that needs to be addressed is when
utilizing the framework to do so is appropriate. The course-development team
and, in particular, the course designer should be able to utilize design patterns
to assist in the modeling of the courses.

Design patterns can be used as a powerful tool in the creation of a curriculum’s
plans. When used together with the application of Learning Objects Oriented
Course Design, design patterns are another tool that can be applied in order to
achieve more robust, flexible, and adaptive curriculum plans, to organize LOs
into cohesive yet independent course structures.

The ability of design patterns to do more than document the curriculum plan and
course design decisions that were made in its creation offers a degree of
protection for the adaptability built into the system. Design patterns also offer
another way in which the curriculum plans can be conceived and created. The
addition of this layer of abstraction to the Learning Object-Oriented paradigm
clearly allows for a more robust and adaptable curriculum.

Conclusions

We have discussed an integrated approach to designing and developing
adaptive distributed learning environments. The main objectives are to reduce
the complexity of the development of distributed learning environments and to
reduce the workloads of users (educators and learners) with personalized
assistance in the environments where various resources are widely distributed,
heterogonous, and ever-changing.

Web Services technology provides a new way to integrate existing systems or
applications, and the ability to access data in a heterogeneous environment. In
Web Services technology, rather than building large, closed systems, the focus
is on flexible architectures that provide interoperability of components and
learning content, and that rely on open standards for information exchange and
component integration.

To reduce the information workload of educators and provide assistance to
learners, distributed learning environments require that software not merely

Integrating Agents and Web Services 215

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

respond to requests for information but intelligently adapt and actively seek
ways to support learners and educators. To take advantages of these two
technologies, we advocate integrating agents and Web services into distributed
learning systems.

For future work, we will address the semantics integration and knowledge
management when using the approach proposed in this chapter.

References

Baylor, A. (1999). Intelligent agents as cognitive tools for education. Educa-
tional Technology, XXXIX(2), 36–41.

Blackmon, W. H., & Rehak, D. R. (2003). Customized learning: A Web
services approach, Proceedings: Ed-Media 2003.

Chan, T. –W. (1995). Artificial agents in distance learning. International
Journal of Educational Telecommunications, 1(2/3), 263–282.

Dale, J., Ceccaroni, L., Zou, Y., & Agam, A. (2003). Implementing agent-
based Web services, challenges in open agent systems. 2003 Workshop,
July 15, Autonomous Agents and Multi-Agent Systems Conference in
Melbourne, Australia, July 14–17.

Dellarocas, C. (2000). Contractual agent societies: Negotiated shared context
and social control in open multi-agent systems. Workshop on Norms and
Institutions in Multi-Agent Systems, Fourth International Confer-
ence on Multi-Agent Systems (Agents-2000), Barcelona, Spain, June.

Gavrilova, T., Voinov, A. V., & Lescheva, I. (1999). Learner-model ap-
proach to multi-agent intelligent distance learning system for program
testing. IEA/AIE 1999 (pp. 440–449).

Geng, X., Gopal, R. D., Ramesh, R., & Whinston, A. B. (2003). Scaling Web
services with capacity provision networks. IEEE Computer, November,
64–72.

Greer, J., McCalla, G., Cooke, J., Collins, J., Kumar, V., Bishop, A., &
Vassileva, J. (1998). The intelligent helpdesk: Supporting peer-help in a
university course. In B. P. Goettl, H. M. Halff, C. L. Redfield, & V. J.
Shute (Eds.), Intelligent tutoring systems. LNCS1452 (pp. 494–503).
Heidelberg: Springer-Verlag

216 Lin, Esmahi & Poon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Greer, J., McCalla, G., Vassileva, J., Deters, R., Bull, S., & Kettel, L. (2001).
Lessons learned in deploying a multi-agent learning support system: The
I-Help experience. Proceedings of AIED’2001 (pp. 410–421). San
Antonio, TX.

Huhns, M. N. (2002). Agents as Web Services. IEEE Internet Computing,
July/August, 93–95.

Jafari, A. (2002). Conceptualizing intelligent agents for teaching and learning.
Educause Quarterly, 3, 28–34.

Jennings, N., Sycara, K., & Wooldridge, M. (1998). A roadmap of agent
research and development. Autonomous Agents and Multi-Agent Sys-
tems, 1(1), 7–38.

Jones, M., & Winne, P. H. (1992). Adaptive learning environments:
Foundations and frontiers, NATO ASI Series F: Computer and Sys-
tems Sciences, Vol. 85.

Lin, F., Poon, L., & Leung, S. (2004). Integrating Web services and agent
technology for e-learning course content maintenance. The 17th Interna-
tional Conference on Industry and Engineering Application of Arti-
ficial Intelligence and Expert Systems (IEA/AIE), Special Session on
IT for e-Learning, Ottawa, Canada, May 17–20.

Lin, F., & Holt, P. (2001). Towards agent-based online learning. IASTED Int.
Conf. Computer and Advanced Technology in Education (CATE)
(pp. 124–129). June 27–29, Banff, Canada.

Luck, M., McBurney, P., & Preist, C. (2003). Agent technology: Enabling
next generation computing: A roadmap for agent based computing,
AgentLink II.

O’Hare, G. M. P., & Jennings, N. R. (1996). Foundations of distributed
artificial intelligence. New York: John Wiley & Sons.

Phillips, R. (1997). The developer’s handbook to interactive multimedia.
Kogan Page.

McGreal, R., Anderson, T., Friesen, N., Sosteric, M., Hewitt, K., Ring, J.,
Richards, G., Hatala, M., Calvert, T., Chiasson, M., Roberts, T., Carey,
T., Harrigan, K., Paquette, G., & Downes, S. (2002). eduSource: A pan-
Canadian learning object repository. In Proceedings of the E-Learn
2002 Conference. Montreal: Association for the Advancement of
Computing in Education.

Integrating Agents and Web Services 217

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sturm, A., Dovi, D., & Shehory, O. (2003). Single-model method for
specifying multi-agent systems. Proceedings of AAMAS, 2003,
Melbourne (pp. 121–128).

Thaiupathump, C., Bourne, J., & Campbell, J. O. (1999). Intelligent agents for
online learning. JALN, 3(2), November, 1–19.

Vouk, M. A., Bitzer, D. L., & Klevans, R. L. (1999). Workflow and end-user
quality of service issues in Web-based education. IEEE Trans. on
Knowledge and Data Engineering, 11(4), 673–687.

Wagner, T., Garvey, A., & Lesser, V. (1998). Criteria-directed heuristic task
scheduling. International Journal of Approximate Reasoning, Special
Issue on Scheduling, 19(12), 91–118.

Wang, H., & Holt, P. (2002). The design of an integrated course delivery
system for Web-based distance education. In Proceedings of the
IASTED International Conference on Computers and Advanced
Technology in Education (CATE 2002) (pp. 122–126).

Wooldridge, M., & Jennings, N. (1995). Intelligent agents: Theory and
practice. The Knowledge Engineering Review, 10(2), 115–152.

Yang, J., & Papazoglou, M. P. (2000). Interoperation support for electronic
business. Communication ACM, 43(6), 39–47.

Yu, E. (2001). Agent-oriented modeling: Software versus the world. Agent-
Oriented Software Engineering AOSE-2001 Workshop Proceedings.
LNCS 2222 (pp. 206–225). Heidelberg: Springer-Verlag.

