The Use of Software Metrics for Enhancing Software Quality and Reliability

November 15, 2000
Richard Huntrods

Presentation Overview

- Introduction
- A Brief History
- Contemporary State of the Art
- Future Perspectives
- Conclusion

Introduction (1)

- Goals:
 - We want software that meets user requirements
 - Software quality and reliability are critical
- Software metrics are a fundamental tool
- Metrics are measurement and prediction

Introduction (2)

- Object-oriented metrics necessary for OO code
- Industry data extends current student data models
- Statistical Analysis of the data is the next step
- Ongoing tool development to automate processes

A Brief History (1)

- Metrics framework:
 - classifying entities to be examined
 - determining relevant measurement goals
 - identifying process maturity

A Brief History (2)

- Classifying Entities:
 - Process
 - Products
 - Resources
A Brief History (3)

- Process
 - duration, effort, incidents
- Products
 - external vs. internal measures
- Resources
 - persons, materials, methods

A Brief History (4)

- Relevant measurement goals
 - Goal Question Metric (GQM)
- Process Maturity
 - Capability Maturity Model (CMM)

A Brief History (5)

- Software measurement validation
 - Measurement systems
 - LOC/hr., defects/KLOC
 - Prediction systems
 - how does quality relate to the measures?
 - Is it possible to predict quality from measures?

Contemporary State of the Art (1)

- Standard Metrics
 - LOC
 - McCabe’s cyclomatic complexity
 - fan-in, fan-out
 - Halstead volume

Contemporary State of the Art (2)

- OO Concepts
 - Objects (classes)
 - Encapsulation
 - Inheritance
 - Polymorphism

Contemporary State of the Art (3)

- OO Metrics - Chidamber and Kemerer
 - Weighted methods per class
 - depth of inheritance tree
 - number of children
 - coupling between objects
 - response for a class
 - lack of cohesion in methods
Contemporary State of the Art (4)

• Current models employ student data
 – limited scope
 – limited developer experience
 – limited program complexity
• New Models based on Industrial data
 – “real world” scope
 – “real world” developer experience
 – “real world” program complexity

Future Perspectives

• Predictive models
 – use statistical methods to validate current measures
 – produce predictive models and history match with existing measures

Conclusion (1)

• History
 – Software quality and reliability are the goal
 – Software Metrics help achieve the goal
• Contemporary State of the Art:
 – Conventional and OO metrics are required
 – Metrics provide measures and prediction
 – Industrial data allows more meaningful/useful models

Conclusion (2)

• Future Perspectives:
 – Statistical methods for validation of current models
 – Statistical methods for production of predictive models
• Questions